Evidence for specific nucleocytoplasmic transport pathways used by leucine-rich nuclear export signals.
نویسندگان
چکیده
Various proteins with different biological activities have been observed to be translocated from the nucleus to the cytoplasm in an energy- and signal-dependent manner in eukaryotic cells. This nuclear export is directed by nuclear export signals (NESs), typically characterized by hydrophobic, primarily leucine, amino acid residues. Moreover, it has been shown that CRM1/exportin 1 is an export receptor for leucine-rich NESs. However, additional NES-interacting proteins have been described. In particular, eukaryotic initiation factor 5A (eIF-5A) has been shown to be a critical cellular cofactor for the nuclear export of the HIV type 1 (HIV-1) Rev trans-activator protein. In this study we compared the nuclear export activity of NESs of different origin. Microinjection of export substrates into the nucleus of somatic cells in combination with specific inhibitors indicated that specific nuclear export pathways exist for different NES-containing proteins. In particular, inhibition of eIF-5A blocked the nuclear export of NESs derived from the HIV-1 Rev and human T cell leukemia virus type I Rex trans-activators, whereas nucleocytoplasmic translocation of the protein kinase inhibitor-NES was unaffected. In contrast, however, inhibition of CRM1/exportin 1 blocked the nuclear export of all NES-containing proteins investigated. Our data confirm that CRM1/exportin 1 is a general export receptor for leucine-rich NESs and suggest that eIF-5A acts either upstream of CRM1/exportin 1 or forms a complex with the NES and CRM1/exportin 1 in the nucleocytoplasmic translocation of the HIV-1 Rev and human T cell leukemia virus type I Rex RNA export factors.
منابع مشابه
Identification of novel Saccharomyces cerevisiae proteins with nuclear export activity: cell cycle-regulated transcription factor ace2p shows cell cycle-independent nucleocytoplasmic shuttling.
Nuclear export of proteins containing leucine-rich nuclear export signals (NESs) is mediated by the NES receptor CRM1/Crm1p. We have carried out a yeast two-hybrid screen with Crm1p as a bait. The Crm1p-interacting clones were subscreened for nuclear export activity in a visual assay utilizing the Crm1p-inhibitor leptomycin B (LMB). This approach identified three Saccharomyces cerevisiae protei...
متن کاملHuman cytomegalovirus UL84 protein contains two nuclear export signals and shuttles between the nucleus and the cytoplasm.
Previous studies defined pUL84 of human cytomegalovirus as an essential regulatory protein with nuclear localization that was proposed to act during initiation of viral-DNA synthesis. Recently, we demonstrated that a complex domain of 282 amino acids within pUL84 functions as a nonconventional nuclear localization signal. Sequence inspection of this domain revealed the presence of motifs with h...
متن کاملAdenomatous polyposis coli protein contains two nuclear export signals and shuttles between the nucleus and cytoplasm.
Mutational inactivation of the adenomatous polyposis coli (APC) tumor suppressor initiates most hereditary and sporadic colon carcinomas. Although APC protein is located in both the cytoplasm and the nucleus, the protein domains required to maintain a predominantly cytoplasmic localization are unknown. Here, we demonstrate that nuclear export of APC is mediated by two intrinsic, leucine-rich, n...
متن کاملExportin 7 defines a novel general nuclear export pathway.
Most transport pathways between cell nucleus and cytoplasm are mediated by nuclear transport receptors of the importin beta family. These receptors are in continuous circulation between the two compartments and transfer cargo molecules from one side of the nuclear envelope to the other. RanBP16 is a family member from higher eukaryotes of so far unknown function. We now show that it exports p50...
متن کاملSubcellular localization of CrmA: identification of a novel leucine-rich nuclear export signal conserved in anti-apoptotic serpins.
The cowpox virus-encoded anti-apoptotic protein cytokine response modifier A (CrmA) is a member of the serpin family that specifically inhibits the cellular proteins caspase 1, caspase 8 and granzyme B. In this study, we have used Flag- and yellow fluorescent protein (YFP)-tagged versions of CrmA to investigate the mechanisms that regulate its subcellular localization. We show that CrmA can act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 11 شماره
صفحات -
تاریخ انتشار 1999